新聞中心Info
合作客戶/
拜耳公司 |
同濟大學 |
聯(lián)合大學 |
美國保潔 |
美國強生 |
瑞士羅氏 |
相關新聞Info
-
> 海洋環(huán)境表面活性物質來源及對海洋飛沫氣溶膠數(shù)濃度、粒徑分布、理化性質的影響(四)
> 強紫外線輻射對減縮劑抑制水泥石干縮變形效果研究(二)
> 不同溫度下手性離子液體及二元混合物的密度和表面張力(下)
> 牡蠣低分子肽LOPs雙重乳液制備、界面性質檢測及消化吸收特性研究(一)
> 人胰島素的朗繆爾單分子層膜的表面化學和光譜學性質——實驗部分
> 毛細現(xiàn)象及潤濕作用機理相關解釋
> 表面張力儀測試預熱具體方法
> 不同質量分數(shù)的EMI溶液的表面張力測定【實驗下】
> 氟原子表面張力極低,可提高消泡劑的持續(xù)抑泡效果
> 產低溫β-甘露聚糖酶的菌株O5提升低溫油藏壓裂液的破膠性能——結果與討論、結論
推薦新聞Info
-
> 正己醇聚氧乙烯醚硫酸鈉、正己醇聚氧丙烯醚硫酸鈉水溶液平衡表面張力、動態(tài)表面張力測定(二)
> 正己醇聚氧乙烯醚硫酸鈉、正己醇聚氧丙烯醚硫酸鈉水溶液平衡表面張力、動態(tài)表面張力測定(一)
> 遼河油田原油的石油酸、石油堿組分萃取過程、結構表征及界面張力測量——結果與討論、結論
> 遼河油田原油的石油酸、石油堿組分萃取過程、結構表征及界面張力測量——實驗部分
> N-十四?;於彼峒捌溻c鹽合成路線、制備、表面張力等性能測定(二)
> N-十四酰基天冬氨酸及其鈉鹽合成路線、制備、表面張力等性能測定(一)
> 3種增效劑對滅草松AS、草銨膦AS、高效氟吡甲禾靈EC增效作用及表面張力影響(三)
> 3種增效劑對滅草松AS、草銨膦AS、高效氟吡甲禾靈EC增效作用及表面張力影響(二)
> 3種增效劑對滅草松AS、草銨膦AS、高效氟吡甲禾靈EC增效作用及表面張力影響(一)
> 以大豆為原料合成的N-椰子油?;鶑秃习被岜砻婊钚詣┍砻鎻埩?、乳化起泡潤濕性能測定(二)
新型助排劑配方組分、對表/界面性能的影響及助排效果(三)
來源:西安石油大學學報(自然科學版) 瀏覽 168 次 發(fā)布時間:2025-06-27
描述固氣、固液、液氣界面張力和接觸角的楊氏方程為:
式中,γsg為固體表面張力,γsl為固液界面張力,γlg為液體表面張力。巖石表面親水性增強降低了巖石與水間的固液界面張力γsl,由于巖石的表面張力γsg不變,因而γcosθ上升。更重要的是,雖然隨著FC-XF質量分數(shù)的增加,γ減小,但是由于同時引起接觸角減小,導致γcosθ增加。由公式(1)可知,γcosθ增加表明毛細管阻力增大,這更直觀地說明對巖石潤濕性的調節(jié)是決定助排劑體系性能的一個至關重要的因素。
圖5為Ⅱ型潤濕性改變劑質量分數(shù)為0.2%、FC-XF質量分數(shù)為0.02%時碳氫表面活性劑APS質量分數(shù)對體系表面張力、界面張力和接觸角的影響。
圖5 APS+0.2%Ⅱ型潤濕性改變劑+0.02%FC-XF混合體系表面張力、界面張力和接觸角隨APS濃度的變化
從圖5(a)中可以看出,隨著APS質量分數(shù)的增加,體系的表面張力增大,界面張力減小,這與FXCF對表/界面張力的影響機制相同。從圖5(b)中可以看出,隨著APS質量分數(shù)的增加,體系與巖石的接觸角先增加再減小,相應的γcosθ先減小再增大,均出現(xiàn)極值點,這與圖4(b)的變化趨勢不同。這是因為吸附Ⅱ型潤濕性改變劑和FC-XF使得巖石表面由水濕轉變?yōu)槿跤H水性潤濕(接觸角<75°),更易于吸附APS的親水頭基而使碳氫鏈在巖石表面暴露,這降低了巖石表面的親水性,因而隨著APS質量分數(shù)的增加接觸角增大。但是,當APS質量分數(shù)大于0.15%后,過多的APS分子可能在巖石表面發(fā)生雙分子層吸附或因競爭吸附而降低Ⅱ型潤濕性改變劑的吸附量,使得巖石表面的親水性增加。而且,接觸角的變化決定了γcosθ的變化趨勢,因而接觸角和γcosθ隨APS質量分數(shù)的變化曲線中均出現(xiàn)極值點。
從圖4和圖5中也可以看出,當Ⅱ型潤濕劑質量分數(shù)為0.2%、APS質量分數(shù)在0.05%~0.20%之間、FC-XF質量分數(shù)在0.01%~0.03%之間時混合體系具有更高的界面活性。因此,選擇APS質量分數(shù)為0.05%、0.10%和0.20%,Ⅱ型潤濕劑質量分數(shù)為0.1%、0.2%和0.5%,F(xiàn)C-XF質量分數(shù)為0.01%、0.02%和0.03%進行三因素三水平的正交實驗,考察APS/Ⅱ/FC-XF混合體系的界面性能及與巖石的接觸角,結果如表1所示。
表1體系組成和含量對APS/Ⅱ/FC-XF混合體系界面性能的影響
從表1中可以看出,在所測試的濃度范圍內APS/Ⅱ/FC-XF混合體系均表現(xiàn)出良好的界面性能,且綜合對比上述混合體系的表/界面張力和接觸角數(shù)據(jù),可以發(fā)現(xiàn):0.05%APS+0.5%Ⅱ+0.02%FC-XF、0.1%APS+0.2%Ⅱ+0.02%FC-XF、0.1%APS+0.5%Ⅱ+0.03%FC-XF混合體系均能達到表面張力≤22 mN/m、界面張力≤0.5 mN/m和接觸角≥80°的高界面活性性能指標。實驗選擇具有21.7 mN/m和0.046 3 mN/m的低表/界面張力,并且與巖石達到中性潤濕的接觸角83.27°的0.1%APS+0.2%Ⅱ+0.02%FC-XF混合體系作為新型高界面活性助排劑使用。
2.3助排效果評價
實驗對比了新型助排劑(0.1%APS+0.2%Ⅱ+0.02%FC-XF混合體系)與勝利油田在用助排劑性能,結果如表2所示。
無助排劑、含質量分數(shù)0.3%在用助排劑、含質量分數(shù)0.32%的新型助排劑的破膠液黏度相當,且含新型助排劑的破膠液黏度略低,這表明新型助排劑的加入不影響壓裂液的破膠性能。同時,無助排劑破膠液的表/界面張力高且接觸角小,加入在用助排劑后的界面性能得到大大改善,界面張力可降低到0.023 1~0.933 5 mN/m,表面張力可降低到23.8~29.3 mN/m,接觸角在59°~71°間,破膠液排出效率上升,助排率為69%~76%。含新型助排劑的破膠液的界面性能更加優(yōu)異,可具有20.8 mN/m和0.017 6 mN/m的低表/界面張力,且接觸角為82°,因而助排率可達到85%,這比在用常規(guī)助排劑的助排率提高了9%~16%。從上述結果可以看出,所制備的新型助排劑由于具有降低表/界面張力和改變巖石表面潤濕性的雙重作用,助排效果優(yōu)良。
表2新型助排劑與在用助排劑性能對比
3結論
(1)烷基羧基甜菜堿APS、Ⅱ型潤濕性改變劑和全氟烷基氧化胺FC-XF復配體系具有高界面活性,0.1%APS+0.2%Ⅱ+0.02%FC-XF配方體系具有21.7 mN/m和0.046 mN/m的低表/界面張力,并且可將巖石表面潤濕性由55°的水濕接觸角調節(jié)到83°的中性潤濕接觸角,可作為高界面活性助排劑使用。
(2)由于具有降低表/界面張力和改變巖石表面潤濕性的雙重作用,所制備的新型助排劑比常規(guī)在用助排劑具有更加優(yōu)異的界面性能和助排效果。